
The Genome Resources and Tools Project

FHI 2012 Annual Meeting

August 9, 2012

John Carlson

The Schatz Center for Tree Molecular Genetics
Pennsylvania State University

The Genome Resources and Tools Project General Approach

Genome Sequencing (year 1)

Genome Assembly (year 2)

Candidate Gene Identification by function

Focused Sequencing of Resistance QTL (year 3)

Final QTL Resistance Candidate Genes List

Transfer Candidate Genes to
FHI Transgenics and Breeding groups

The Genome Resources and Tools Project

Genome Sequencing (year 1)

Year One Deliverables were Achieved

- 1. The reference *Castanea mollissima* cv. Vanuxem genome was sequenced to over 25-fold depth.**
- 2. Preliminary *de novo* assemblies of the reference genome sequence were conducted.**

The Genome Resources and Tools Project

Genome Assembly (year 2)

Year Two Deliverables Achieved

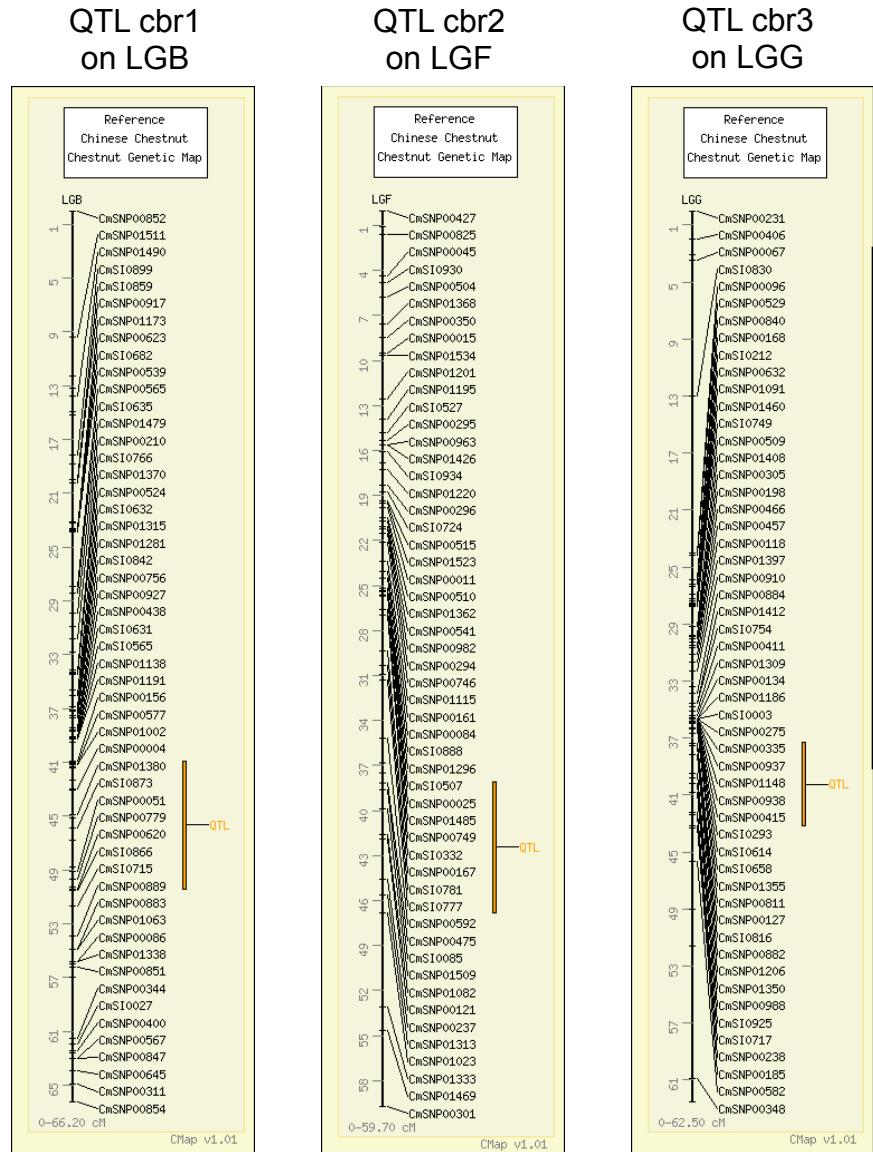
- 1. Produced additional genome sequence.**
- 2. Completed assembly of the genome sequence.**
- 3. Identified over 60,000 genes (reflects heterozygosity)**
- 4. Conducted candidate gene identification:**
 - 97% of transcripts aligned to genome assembly
 - 66,662 gene models predicted
 - Candidate gene coding sequences delivered to transgenics team
- 4. Strategy for resistance gene discovery updated.**
 - QTLs to be sequenced in depth

The Genome Resources and Tools Project

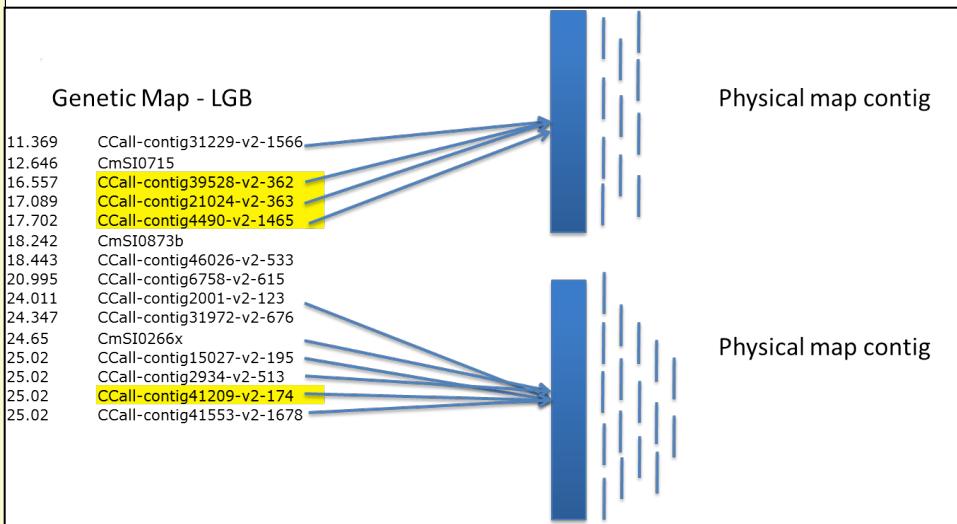
Sequencing of Resistance QTL (year 3), APPROACH:

Genetic Map (QTL markers)

Physical Map (QTL rDNA clones)


BAC DNA pools (covering QTLs)

Sequencing of QTL DNA pools


Identification of Candidate Genes for
Blight Resistance in QTL

The Genome Resources and Tools Project

Individual QTL sequencing approach

The Genome Resources and Tools Project

Total number of Genes Identified in the Blight Resistance QTLs

QTL	LG	# Genes	# bases / QTL	# Genes / Mbases	# Stress-response genes
cbr1	B	994	10.14 Mbases	151	98
cbr2	F	548	5.13 Mbases	137	58
cbr3	G	410	4.51 Mbases	139	38

The Genome Resources and Tools Project

Final QTL Resistance Candidate Genes List

QTL Cbr1 genes

l-ascorbate peroxidase	Peroxidase activity; Response to oxidative stress
peroxidase 17-like	Peroxidase activity; Response to oxidative stress
peroxidase	Peroxidase activity; Response to oxidative stress
cc-nbs-lrr resistance protein	Peroxidase activity; Response to oxidative stress
ribonuclease h-like protein	Defense response; ADP binding; DNA binding
disease resistance protein	Defense response; ADP binding; DNA binding
cc-nbs-lrr resistance protein	Defense response; ADP binding
adenine nucleotide alpha hydrolases-domain containing protein kinase	Response to stress
hypothetical protein [Vitis vinifera]	RNA binding; DNA binding; RNA-directed DNA polymerase activity; DNA replication; DNA repair

The Genome Resources and Tools Project

Final QTL Resistance Candidate Genes List

QTL Cbr2 genes

cc-nbs-lrr resistance protein	Defense response; ADP binding
cc-nbs-lrr resistance protein	Defense response; Protein binding; ADP binding; DNA binding
disease resistance rpp8-like protein	Defense response; ADP binding
tir-nbs-lrr resistance protein	Signal transduction; Defense response; Protein binding; ADP binding
tir-nbs-lrr resistance protein	Signal transduction; Defense response; Protein binding; ADP binding
tir-nbs-lrr resistance protein	P:defense response; F:ADP binding
tmv resistance protein –like	Signal transduction; Defense response; Protein binding; ADP binding
tmv resistance protein –like	Signal transduction; Defense response; Protein binding; ADP binding
tmv resistance protein –like	Signal transduction; Defense response; Protein binding; ADP binding
tmv resistance protein -like	Signal transduction; Defense response; Protein binding; ADP binding

The Genome Resources and Tools Project

Final QTL Resistance Candidate Genes List

QTL Cbr3 genes

ATP binding	Response to stress; ATP binding; Protein phosphorylation; Protein kinase activity
BED finger-nbs-lrr resistance protein	Defense response; ADP binding
Cationic peroxidase 1	Peroxidase activity; Response to oxidative stress; Oxidation reduction
N-glycosylase DNA lyase	DNA repair; Damaged DNA binding

The Genome Resources and Tools Project

Transfer Candidate Genes to FHI Transgenics and Breeding groups

- Have complete genes from Chinese chestnut including regions regulating gene expression
 - This will enable cis-transgenics approach
- Also have many genes differing in expression patterns in cankers in Chinese vs American chestnut
- Developing markers in candidate genes for marker-assisted breeding by resequencing additional chestnut genotypes

5k 6k 7k 8k 9k 10k 11k 12k 13k 14k 15k 16k 17k 18k 1

predictions using Medicago training model

GeneMark.Mt.hmm3 model 1260

GeneMark.Mt.hmm3 model 1261

GeneMark.Mt.hmm3 model 1262

GeneMar

ppa002394m.g | ppa002394m

ppa002617m.g | ppa002617m

ppa002230m.g | ppa002230m

ppa001392m.g | ppa001392m

Genes of CCall v2 unigenes

CCall_contig2311_v2

CCall_contig48112_v2

Others

CUGI prediction poolB_contig00013.1

The Genome Resources and Tools Project

Continuing Research and Future Plans

- Resistance Candidate Gene development
 - Full length candidate genes from BAC clones
 - Marker discovery by resequencing
 - Markers in disease-resistance candidate genes
 - Marker genes that distinguish between the genomes of Chinese chestnut and American chestnut, for selection
 - Comparative studies with peach and poplar QTLs
- 15X more genome sequence being produced
- New, final publication-quality genome assembly soon
- ‘Jamboree’ of genomics experts will be called for
 - Producing best possible genome and QTL assemblies
 - Identifying the best set of blight resistance genes

The Chinese Chestnut Genome Project Team

John E. Carlson, PI, Schatz Center, Penn State

DNA Sequencing

Stephan C. Schuster, Professor of Biochemistry and Molecular Biology, Penn State

Lynn P. Tomsho, Daniela Drautz, and Lindsay Kasson - Sequencing Specialists, Penn State

Tyler Wagner and Nicole Zembower, Research Assistants, Penn State
Bioinformatics and Comparative Genomics

Webb Miller, Professor of Biology and Computer Science & Engineering, Penn State

Charles Addo-Quaye, Postdoctoral Fellow, Schatz Center, Penn State

Meg Staton, Stephen Ficklin, Christopher Saski - Bioinformatics team at CUGI

Bert Abbott, Professor Emeritus, Clemson University

Abdelali Barakat, Research Associate, Clemson University

Other FHI Collaborators: Sandra Anagnostakis, Kathleen Baier, Joe James, Nurul Faridi, Stephen Ficklin, Fred Hebard, Thomas Kubisiak, Charles Maynard, Scott Merkle, C. Joseph Nairn, William Powell, C. Dana Nelson
