

Forest Health Initiative Research at UGA

Clonal Testing/Gene Transfer Project

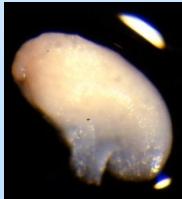
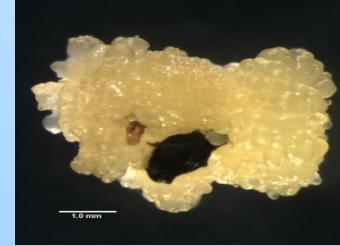
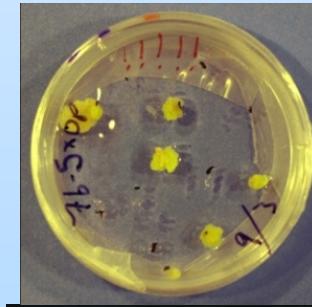
Milestones on the way to
“the plantable tree”

Scott Merkle and Joe Nairn

Warnell School of Forestry and Natural Resources
University of Georgia, Athens, GA

Objective 1: Initiate new embryogenic cultures from a broad diversity of chestnut germplasm

- Chestnuts from TACF, ACCF, NY-TACF, VDF and other suppliers cultured over 3 seasons of culture initiations (2009, 2010, 2011)
- Over **450** new embryogenic cultures from pure American chestnut, pure Chinese chestnut, OP B3F3 and other hybrid chestnuts captured to date
- A broad range of genotypes will help ensure “robust” plantable trees (broad genetic diversity)




Gary Griffin collecting burs

August

“Capture”

Embryogenic culture initiation from TACF B3F3 germplasm

- MOU between TACF and FHI and Germplasm Agreement between TACF and UGA reached in 2010 allowed culturing of TACF B3F3 material for the first time
- **10** OP B3F3 families cultured in 2010 and **11** more in 2011, representing both Graves (W) and Clapper (D) lines of blight resistance...and perhaps Graves *Phytophthora* resistance as well
- Embryogenic cultures “captured” for all **21** TACF B3F3 families cultured
- No significant difference in initiation rates between B3F3 and pure American
- First CP B3F3s being initiated now (August 2012)

B3F3 culture initiation

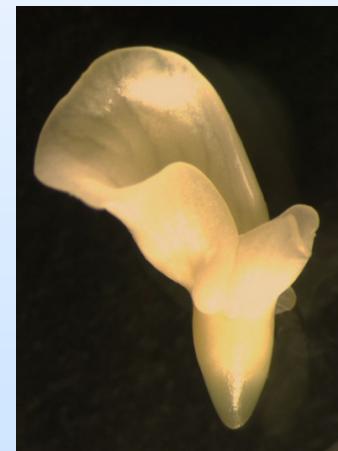
Captured B3F3 culture

Objective 2: Screen cultures to identify those with best somatic embryo/somatic seedling production capability

- All embryogenic cultures from 2009 and 2010 initiations have been screened (i.e. through somatic seedling performance in greenhouse)
- 2011 cultures are still in the process of being screened
- Several promising pure AC and hybrid lines identified for possible use as transformation targets and for clonal testing

RM x TH (ACCF)
somatic seedlings

76-5 x OP (VDF)
somatic seedlings


Thoroughfare Gap (VDF)
somatic seedlings

Nagle (NY-TACF)
somatic seedlings

Production of somatic seedlings for “clonal testing” of conventionally bred chestnut material by cooperators

- First ever TACF B3F3 somatic seedlings in greenhouse--more in hardening-off chamber and *in vitro*
- Somatic seedlings will begin flowing to cooperators (ACCF, TACF, VDF) to plant out this fall for clonal testing
 - i.e. these non-transgenic FHI clones are already “plantable” trees

B3F3 somatic embryo

First W1-30-6 (Graves source) B3F3 somatic seedling

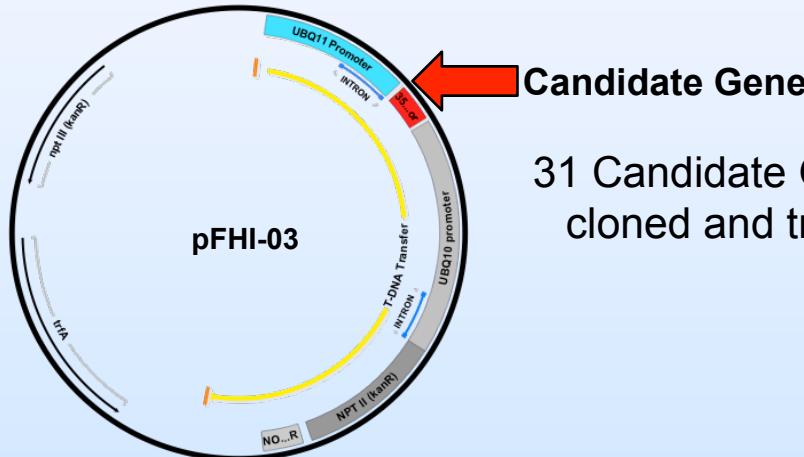
B3F3 somatic seedlings on August 6, 2012

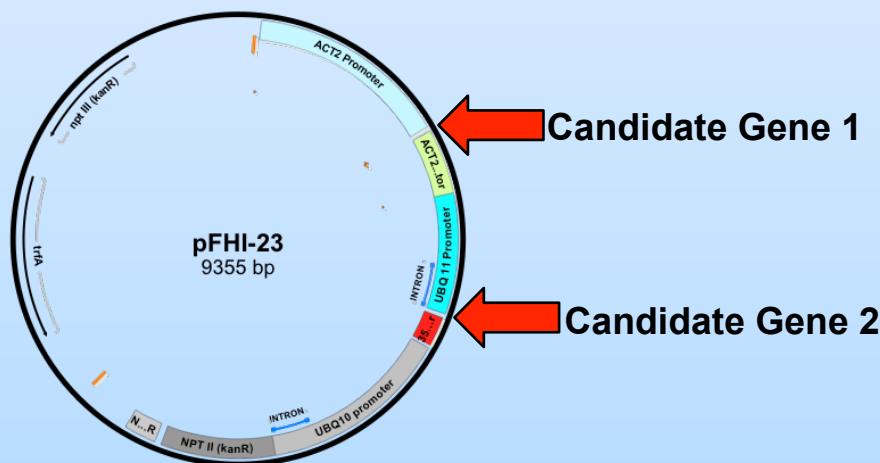
Objective 3: Cryostore copies of all embryogenic cultures

- All (**172**) 2009 and 2010 embryogenic culture lines have been cryostored (at least 3 copies of each)
- Cryostorage of 2011 lines in progress
- **>1100** transgenic events (40 per CG in “workhorse” line, at least 3 copies of each) have been cryostored for first 16 pFHI constructs
- Over **4000** vials total (out of space in cryo-freezer!)
- Cryostorage ensures that once the clone(s) that produce the “plantable tree” is identified, we can thaw out that clone and make millions more.

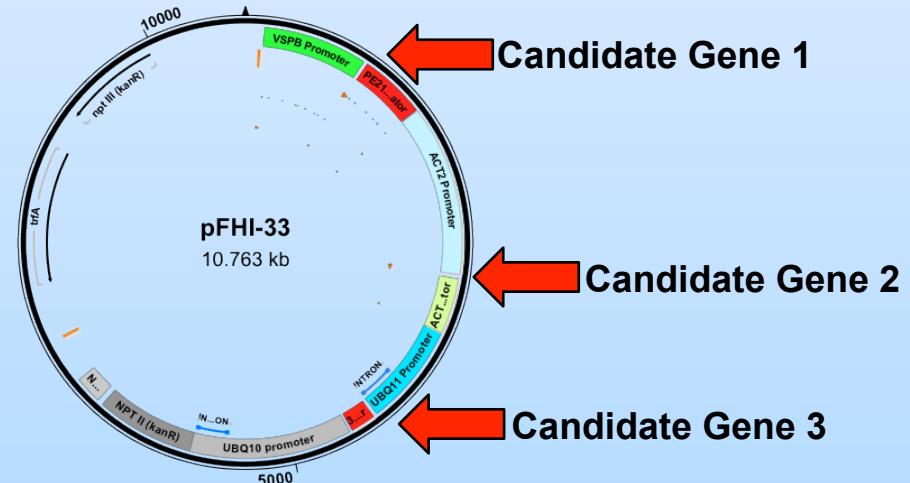
1 week

2 weeks


SE production

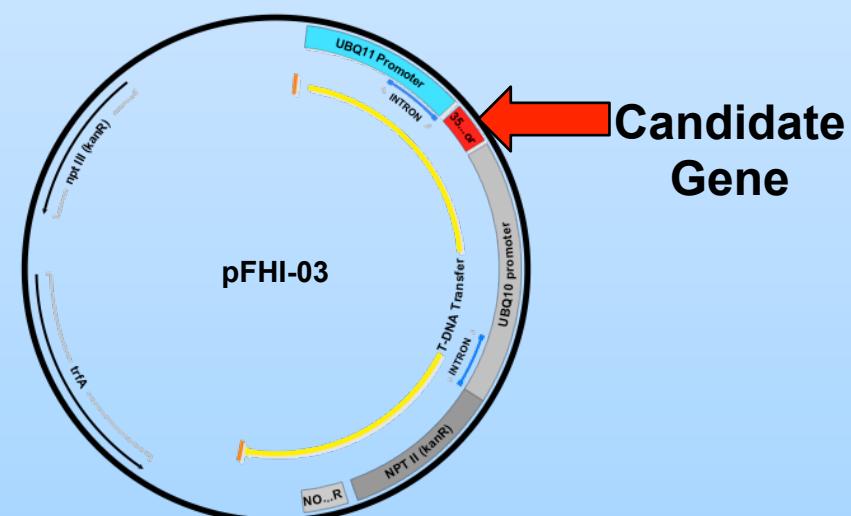

Objective 4: Construct vectors for cloning and expression of candidate resistance genes

pFHI-03: A single gene vector to express genes in American chestnut.


This vector is used to evaluate individual Candidate Genes.

31 Candidate Genes (CG) have been cloned and transformed using this vector.

pFHI-23: A vector to express 2 genes in American chestnut. The vector is used to “stack” or “pyramid” candidate genes.



pFHI-33: A vector to express 3 genes in American chestnut. The vector can be used to express genes from the 3 resistance QTLs.

Objective 5: Production of American chestnut transformed with candidate disease resistance genes

28 Chestnut CGs, 4 Heterologous CGs and 3 Reporter Genes to Date

Vector Construct (pFHI-)	Chestnut Candidate Gene	Vector Construct (pFHI-)	Heterologous Candidate Gene
BGLUC	Beta 1,3 Glucanase	GAFP	Gastrodia Anti-Fungal Protein
CBS	CBS domain containing protein	NPR1	Non-expressor of Pathogen Response
DAHP	Deoxy-arabino-heptulosonate phosphate synthase	CAMP	Capsicum Anti-Microbial Peptide
ACPHOS	Acid Phosphatase	VST	Vitis Stilbene synthase
UDPGT	UDP-glycosyltransferase		
LAC	Laccase		
PRP	Proline Rich Protein		
THAUM	Thaumatin-like protein	GUSi	GUSintron
ETF	Ethylene Transcription Factor	GUSiYFP	GUS intron-Yellow Fluorescent Protein fusion
CYST	Cystatin, cysteine protease inhibitor	GFP	Green Fluorescent Protein
LTP	Lipid Transfer Protein, protease inhibitor		
RPH	Resistance to <i>Phytophthora</i>		
SKDH	Shikimate dehydrogenase		
ACOX	ACC oxidase		
TAGL	Triacylglycerol lipase		
MIP	Myo inositol phosphate synthase		
CAD	Cinnamyl alcohol dehydrogenase-like protein		
PROX	Peroxidase		
CCAOMT	Caffeoyl-CoA-O-methyltransferase	RGAF	
GLUC2	Glucanase; Glycoside Hydrolase Family 17		RPH1 + GAFF
GST7	Glutathione s-transferase		
LTP2	Lipid Transfer Protein 2		
NPR34	Non-expressor of Pathogen Response 3/4		
SBTL	Subtilisin		
MAE	Malic Enzyme		
PAL	Phenylalanine ammonia lyase		
AOS	Allene Oxide Synthase		

Progress through the “pipeline” as of June 1, 2011

Construct	Genotypes transformed	Geneticin resistant events	Events on plates	Events in flasks	Events in SE production	Somatic embryos harvested
pFHI-GUSi	3	>65	65	42	35	142
pFHI-GUSiYFP	4	360	360	16	7	NA
pFHI-NPR1	4	132	132	59	47	1,514
pFHI-Thaum	5	> 1,360	1,360	212	125	1,406
pFHI-ACPHOS	4	>708	708			
pFHI-UDPGTI	3					
pFHI-cmPRP	4	>1,307	1,307			
pFHI-cmLac	2	>500	367			
pFHI-B-Gluc	3	>109	109			
pFHI-CBS1	4	>600	312			
pFHI-ETF1	4	>600	366			
pFHI-GAFP1	>3	> 42	42			
pFHI-Cyst1	>2	NA				
pFHI-LTP1	>2	NA				
pFHI-GFP	NA	NA				
Totals			5128	329	214	3062

Progress through the “pipeline” as of August 6, 2012

Construct	Genotypes transformed	Geneticin resistant events	Events on plates	Events in flasks	Events in SE production	Somatic embryos harvested	Plants in-vitro	Plants in soil
pFHI-GUSi	3	>65	65	42	42	914		14
pFHI-GUSiYFP	4	360	360	16	16	679		14
pFHI-NPR1	6	>682	570	87	87	4,029	13	18
pFHI-THAUM	6	> 1,360	1,360	201	172	8,855		107
pFHI-ACPHOS	6	>1062	308	56	14	46	2	
pFHI-UDPGT	7	>1030	335	36	5	249		
pFHI-PRP	4	>1,307	1,307	59	53	3,221	9	258
pFHI-LAC	4	>500	367	74	65	2,112	17	154
pFHI-BGLUC	3	>109	109	40	31	2,388	67	87
pFHI-DAPH	4	>800	556	39	34	1,380	6	15
pFHI-CBS	4	>600	312	81	71	2,200	70	35
pFHI-ETF	4	>600	366	79	79	2,898	192	164
pFHI-GAfp	4	> 372	255	61	44	1,281	4	9
pFHI-CYST	5	>497	334	61	50	2,591	47	
pFHI-LTP	4	>201	171	66	61	3,266	24	
pFHI-GFP	4	>100	94	15	2			
pFHI-RPH	3	>230	138	35	35	2,481		
pFHI-ACOX	3	>394	175	31	28			
pFHI-MIP	3	>420	205	35	25	921		
pFHI-VST	4	>1159	287	15	15			
pFHI-SKDH	3	>495	242	20	18	106		
pFHI-CAD	3	>520	194	28				
pFHI-PROX	3	>615	282	33	10			
pFHI-CCAOMT	5	>1541	458	5				
pFHI-GST7	4	>555	355	20				
pFHI-CAMP	4	>1101	301	5	5			
pFHI-GLUC2	4	>615	362					
pFHI-TAGL	3	>202	191	30	10	812		
pFHI-SBTL	3	>300	300					
pFHI-NPR34	3	>318	318					
pFHI-LTP2	3	>357	357					
8/6/12 Totals			11034	1270	972	40,429	451	875
6/1/11 Totals			5128	329	214	3062	0	0

Overall Status of Transgenic Chestnut Pipeline as of August 6, 2012

Agrobacterium (AGL1)
infection of chestnut
PEMS

Selection of
growing colonies
with Geneticin

>800 transgenic
somatic seedlings
in pots

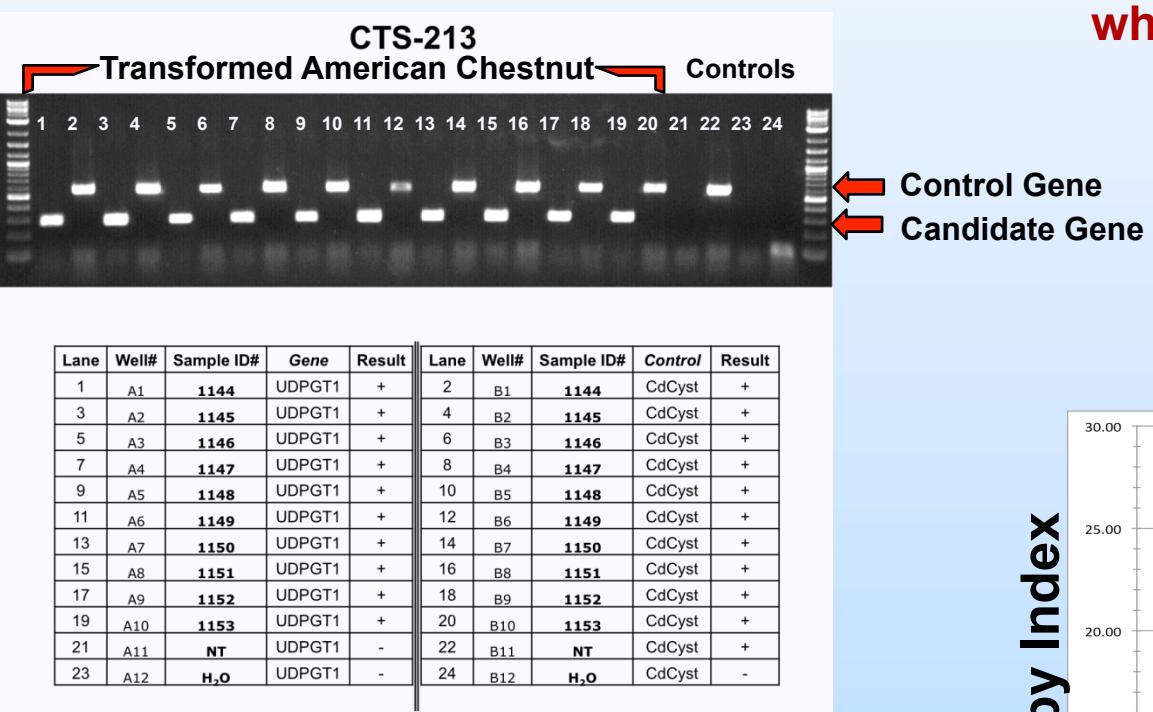
Air-lift bioreactors make cells for
transformation every 2 weeks

>400 transgenic
plants in vitro

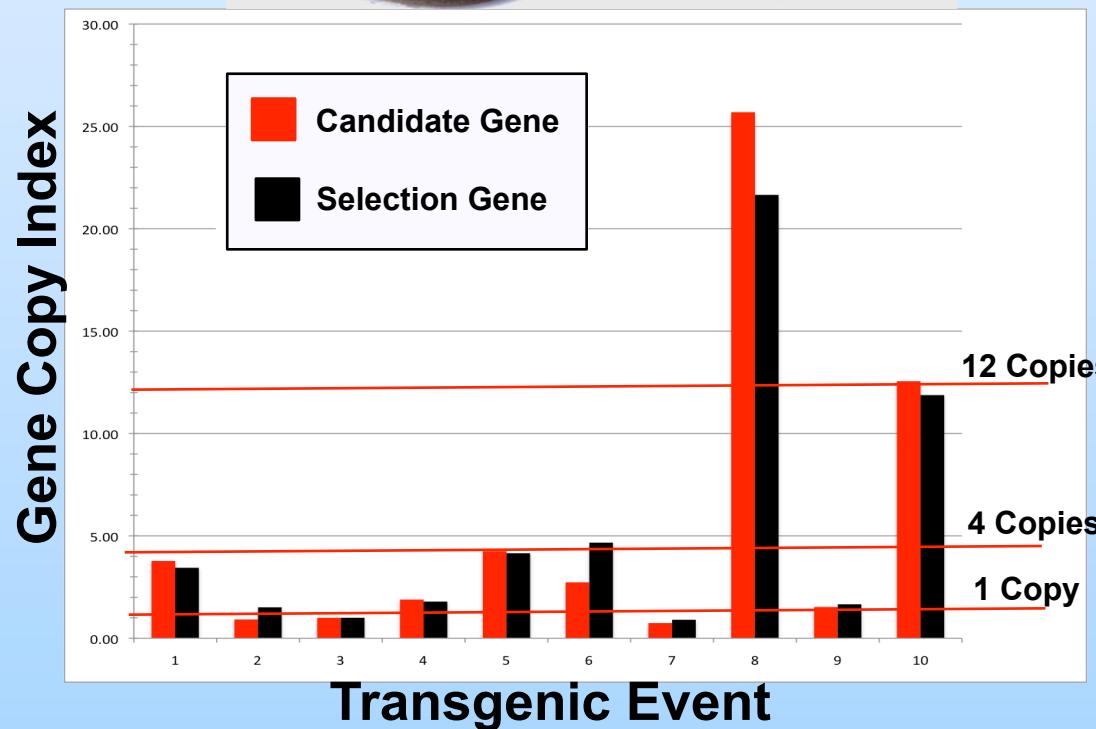
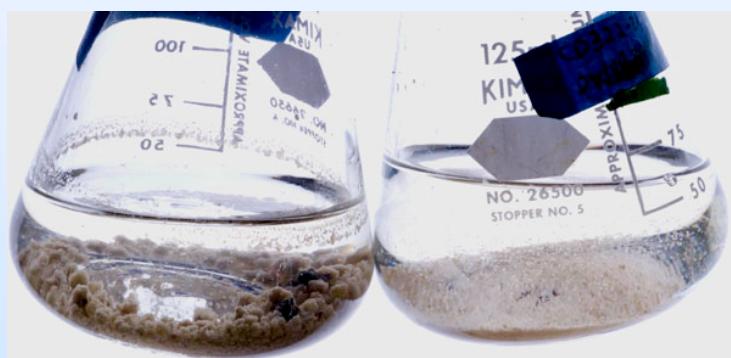
>1200 events
grown in flasks

>900 events through
SE production

>11,000 events
grown on plates


>40,000 somatic
embryos harvested

Molecular characterization of expression and delivery vectors in transformed AC lines



- Screened over **1,300** transgenic events for CG integration and confirmed over **1,240** transgenic lines each containing one of **31** CGs or **3** reporter genes.
- Standardized protocol to screen for CG in embryogenic cultures at 6-8 weeks post-transformation
- Confirmed transcription and translation of the GUS-intron and GFP reporter genes in AC embryogenic cultures by GUS assay and imaging in live tissues
- Confirmed gene expression of ESF39A in roots and stems of 12 transgenic AC plants prior to screening plants for *Phytophthora* resistance

Screening for Candidate Gene insertion and copy number

1st screen at 6-8 weeks post-transformation

Screened for gene insertion and copy number when fractionated for embryo production



Candidate Gene Expression in Independent Transgenic American Chestnut Events

Candidate gene expression among independent lines varies 10 – 100+ fold

Will expression in embryogenic cultures correlate with that in regenerated plants ?

Select and test transgenic lines with different expression levels

Objective 6: Establish field testing sites in South for field testing of transgenic lines

- Over 100 trees representing 10 different ESF39A events and 10 transgenic controls growing at Whitehall Nursery
- 60 ESF39A/OXO trees and controls now in lath house ready to be planted at Whitehall Nursery this fall
- Somatic seedlings with GAFF and other FHI CGs for *Phytophthora* resistance will be ready for screening at James Farm in 2013

May 2011

May 2012

Dr. Joe James

ESF39A/OXOs in lath house

Summary: Milestones on the way to “the plantable tree”

- Over **450** new embryogenic cultures from American chestnut, Chinese chestnut, B3F3 and other hybrid chestnuts captured and cryostored
- **First ever** TACF B3F3 somatic seedlings generated
- **27** chestnut candidate genes and **4** heterologous candidate genes transformed into multiple chestnut genotypes
- Over **800** transgenic somatic seedlings in pots, with thousands more in the pipeline
 - The first trickle of transgenic trees should grow into a flood over the next few years
 - **Really just “hitting our stride” this year**

UGA Group Personnel and Collaborators

Scott Merkle and Joe Nairn

Dr. Lisheng Kong
Assistant
Research Scientist
Transformation
and SE technology

Heather Gladfelter
Research
Professional II
Transformation &
SE technology

Denise Lennon
Research Professional
II (part-time)
Vector construction &
sequencing;
heterologous gene
cloning; CG vector
construction

Paul Montello
Research
Professional III
Cryopreservation

Ross Pringle
Part-time Research
Technician II
Transgenic SE & SS
production

Ryan Tull
Research
Technician III
SE culture initiation
& screening

Allison Newman
Part-time Research
Technician II
Transgenic SE and SS
production; greenhouse;
nursery; screening

Christine Holtz
Undergraduate
Student Researcher
SE culture initiation
& bioreactor testing

Haley Houke
Research Technician III
•Vector construction &
sequencing
•Candidate Gene vector
construction
•Transgenic/transgene
screening

Acknowledgments

Forest Health Initiative
Institute of Forest
Biotechnology
ArborGen LLC
Consortium for Plant
Biotechnology Research
The American Chestnut
Foundation
The American Chestnut
Cooperators Foundation
Virginia Department of
Forestry

Fred Hebard
Sara Fitzsimmons
Jeff Donahue
Gary and Lucille
Griffin
Sandy Anagnostakis
Herb Darling
Bryan Burhans
Jerre Creighton
Wayne Bowman
Bob Leffel
James Donowick
Gary Micsky
Kendra Gurney
Bill Powell
Chuck Maynard